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In the previous paper (Huang 1963) we have seen tha t  the change in orbital period of 
a close binary system as a result of mass ejection by its components depends greatly on 
the angular momentum per unit mass, he, of the escaped particles. Therefore, it is impor- 
tant to know how much angular momentum is carried away per unit mass under any 
given initial condition. It is the purpose of this note to give, by numerical computation, 
some ideas about the behavior of angular-momentum transfer between the ejected par- 
ticles and the binary system itself and to show that It, of a particle a t  infinity, denoted 
by F,,, -, miy he obtained for a given set of initial conditions by integrating the equa- 
tions of motion of the particle over a relatively short period of time. AU symbois used 
here have the same meanings as in the previous paper unless otherwise stated. 

Since we are interested only in close binaries, i t  is permissible to set e = 0. Then the 
equations of motion become identical with those in the restricted three-body problem. 
In  this paper we shall investigate the transfer of angular momentum by the use of these 
equations. 

Several authors, including Kuiper (1941), Kopal (1956, 1957), and Mrs. Gould (1957, 
1959), have derived many orbits for gaseous particles in a close binary system from the 
solutions of the restricted three-body problem. One disadvantage of this kind of calcula- 
tion is that it is impossible to compute the orbits and plot them for all conceivable initial 
conditions. Also, even if they were all plotted, it  is difficult, if not impossible, to derive 
from these highly complicated and seemingly irregular orbits much information that 
may throw some light on the actual motion of gaseous particles in the system. Worst of 
all, such an approach necessarily neglects the collisions of particles themselves, although 
collisions cannot be neglected in this case (Prendergast 1960). Consequently, with only 
a few exceptions, direct integration of the equations of motion has yielded few results of 
any great physical significance. However, as we shall see, useful information can be ob- 
tained by investigating the angular momentum of the particle as a function of time. 

Let us choose a co-ordinate system (x ,  y )  rotating with the circular motion of the 
binary stars around the center of mass of the system. Furthermore, we take the total 
mass of the system as the unit of mass, the separation between the two components as 
the unit of length, and 1/(2n) of the orbital period as the unit of time. Thus, if p denotes 
the mass of one component that is located a t  (1 - p, 0), the other component will have 
mass 1 - I.( and be located a t  (-p, 0) in the rotating co-ordinate system. 

The equations of motion can then be written in a dimensionless form (e.g., Moulton 
1914), which will not be given here. The angular momentum per unit mass in the present 
system of units, he, is now given by 
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a y  a x  
a t  a t  h e = x - - y - + x 2 f y 2 .  
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From the equations of motion, we can easily show that 

where r2 = x2 f y2 and x1 = - p  and x2 = 1 - p. 
When the third body is far away from the system, the changes in x and in y are 

dominantly due to rotation of the co-ordinate system. Therefore, we may write as a first 
approximation, 

If we substitute x and y given by equations (3) in equation (2), we find that h, assumes 
the following form: lot sin t d t j (  r ,  cos t ) .  

If we regard r as constant, the integral vanishes when we integrate over a complete period 
of the binary motion, Le., from t = t o  to t = to + 27r. Thus we derive the conclusion that 
no net angular momentum is transferred in a physically significant degree over a period 
when the particle is far away from the system. 

If we expand the expressions in the square brackets in the integrand of the integral in 
equation (2) in terms of l/r, and take only the first term, we obtain 

x = r c o s t ,  y =  - r s i n t .  (3) 
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he = ?!!k p)(COS2to-coS 2 t ) ,  
4 r3 

(4) 

if we again make use of equations (3) and set r as constant during integration. Thus the 
angular momentum of the particle a t  any moment follows a double sinusoidal curve of 
decreasing amplitude as I increases. The curve has maxima a t  x = 0 and minima a t  
y = 0. Results of actual computations completely verify this prediction, which is based 
on our approximate calculation. In  Figure 1 we have illustrated for t > 7.2 the variation 
of angular momentum of the third body ejected from one of the components under the 
initial conditions 

- 

I 

x = 0 . 8 5 ,  y = o ,  - _  $-4, and _-  2 - 0 ,  
1 

with p = 0.3. This kind of fluctuation in angular momentum is common to all particles 
that are escaping to infinity with reasonable speeds. Since the angular momentum which 
a particle under a given set of initial conditions will possess a t  infinity can be calculated, 
we now have only one value instead of an endless orbit to associate with a given set of 
initial conditions. 

Another advantage of treating the angular momentum instead of the orbit itself 
comes from the consideration of collisions. In  the case of the orbital method, a collision 
between two particles transforms the orbits to two completely different orbits. We can 
predict nothing about the behavior of the orbits before and after the collision. It is for 
this reason that the orbit approach faces its greatest weakness in treating the motion of 
gas in close binaries. 

The situation becomes quite different when we use the angular-momentum approach 
because a definite relation exists that links the dynamical state of particles before and 
after collision. The total angular momentum of colliding particles is conserved in the 
process of collision. If many particles are involved in collision, the net result of inter- 
change in angular momentum among the colliding particles tends to equalize the angular 
momenta of individual particles. Thus the chaotic motion of particles will turn more or 
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less into streams. This is why gaseous rings can be formed by ejected matter. The angular 
momentum per unit mass in the stream can be obtained by taking the average of the 
same quantity for all the individual particles involved. In  this way we may look upon the 
angular-momentum consideration as a link between the orbital approach and the hydro- 
dynamic approach to the problem of stream motion in the binary system. While the 
present paper does not include a study of collision, it is evident that, for fast ejection, the 
results tabulated here can be applied, as an approximation, to aggregates of particles if 
we use the average values as the initial conditions. 

We have computed the stabilized angular momentum for eight groups of sets of initial 
conditions that are given in Table 1, where YY and r2 represent, respectively, the radii of 
the two components. These groups include the cases of ejection in four mutual perpendic- 
ular directions for each component, as the integration has been confined in the x - y 
plane. The computation was carried out on the 7090 IBM computer at the Goddard 
Space Flight Center, the machine program being written and actual computation super- 

1.029653 I 

NO. 

1. .  . . . . . . . . .  
2 . . . . . . . . . . .  
3 . .  . . . . . . . . .  
4. .  . . . . . . . . .  
5 . .  . . . . . . . . .  
6 . .  . . . . . . . . .  
7 . .  . . . . . . . . .  
8.  . . . . . . . . . .  

52 

51- 

I 

1--p 
1--p 
l--p+r* 
l-p-r2 

--p 
--p 
--p-r1 
- M + f l  

FIG. 1.-The variation in angular momentum of a particle escaping from a binary system. It is the 
typical behavior of an escaping particle that its angular momentum undergoes damped oscillations before 
reaching a value that it will carry to infinity. 

TABLE 1 

EIGHT GROUPS OF INITIAL CONDITIONS 

%pe of Ejection 

Front 
Rear 
Exterior 
Interior 
Front 
Rear 
Exterior 
Interior 
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vised by Clarence Wade, Jr. An accuracy of a t  least six significant figures was maintained 
throughout, as judged by the constancy of the Jacobian constant. In  most cases an ac- 
curacy of eight significant figures has been achieved over the entire range of integration. 

As may be expected intuitively, the transfer of angular momentum from the binary 
system to the particle takes place most appreciably when the particle is near to one of the 
components, and this is verified by our extensive computations. Therefore, one cannot 
easily predict the angular momentum of a particle as a function of the time when it  is 
confined to the system. 

Our interest, however, concerns only the escaped particles, for which the pattern of 
transfer is relatively simple. In the case of ejection from the front of the star (Le., in the 
direction of its orbital motion), the angular momentum of the ejected particle starts from 
a positive value, decreases gradually, and then stabilizes to a smaller positive value after 
a series of fluctuations mentioned before and shown in Figure 1. In the case of ejection 
from the rear side of the star (i.e., against the direction of its orbital motion), its angular 
momentum is negative at  the time of ejection. It increases through the interaction with 
the binary system itself and, as in the other case, stabilizes through fluctuations to a 
negative value. Thus, in both cases, the continuous interaction after ejection neutralizes 
a part of the angular momentum acquired a t  the time of ejection. 

In  the case of outward ejection along the x-axis (positive for the component with 
mass p and negative for the other component), the angular momentum initially has a 
positive value, increases gradually, and then stabilizes, after damped oscillations, to a 
constant value without further significant change afterward. Thus a particle finally pos- 
sesses more angular momentum than its initial value. In  all cases the faster the initial 
velocity of ejection, the shorter the time for the particle to reach the stabilized value of 
angular momentum. Also, the angular momentum is stabilized to a value nearer to its 
initial value in the case of a fast ejection than in the case of slower ejections. 

The case of inner ejection along the x-axis (i.e., negative velocity for the p component 
and positive velocity for the 1 - p component) is more complicated than the other cases, 
as we would expect. Actual computations show that it differs from the other cases mainly 
when the velocity of ejection is high, for then the particle will either simply fall into the 
companion component or be strongly perturbed by it during a close encounter such that 
the angular momentum is greatly modified. Thus we cannot make a general statement 
about the angular momentum for high velocities of ejection. However, it is interesting to 
note that for intermediate velocities, say between 4 and 15 in our units, the stabilized 
value of angular momentum does not vary greatly with the initial velocity. 

Some of the numerical results obtained for various sets of initial conditions are given 
in Table 2 according to the order listed in Table 1. For the first four groups we have 
adopted r2 = 0.15, while for the last four groups rl = 0.20. Five values for p and four 
values for V have heen used for each group. There are two entries for each combination 
of p and V ,  the first one being the initial angular momentum he, corresponding to the 
initial conditions and the second being the stabilized value of angular momentum, Le., 
he, m. The values he, in most cases were obtained after we integrated the equations of 
motion up to t = 20. But in some cases where the convergence is slow, we have to reach 
t = 50 before a stabilized value can be determined accurately. 

Only velocities greater than 4 are included in the table because it is difficult to present 
a clear-cut picture of the ejected particle even when the result is represented in terms of 
angular momentum. In other words, the present analysis does not help much the prob- 
lem of gaseous motion inside the close binary system, but, when combined with the re- 
sults obtained in the previous paper, it does help us understand the effect of ejection of 
mass to infinity on the orbital period of the binary. For higher velocities of ejection than 
the listed values, the particle will practically carry the initial value of angular momentum 
to infinity, except in the case of interior ejection. 
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TABLE 2 
ANGULAR MOMENTUM OF AN ESCAPED PARTICLE AS A FUNCTION OF INITIAL. CONDITIONS 

~~ 

No. of Group r-0.3 p=0.4 r=0.1 

4.4325 
4.299 

6.2325 
6.145 

9.8325 
9.780 

14.3325 
14.298 

- 2.7675 
- 2.647 

- 4.5675 
- 4.486 

- 8.1675 
- 8.118 

- 12.6675 
-12.635 

1.1025 
1.1107 

1.1025 
1.1065 

1.1025 
1.1040 

1.1025 
1.1033 

/ I=0.2 $&=os  

2.2725 
1.8669 

3.2725 
3.019 

5.2725 
5.125 

7.7725 
7.676 

3.862: 
3.620 

5.462: 
5.305 

8.662: 
8.569 

12.6625 
12.600 

3.3121 
2.987 

4.712: 
4.503 

7.512: 
7.390 

11.012: 
10.931 

2.7825 
2.402 

3.9825 
3.742 

6.3825 
6.242 

9.3825 
9.290 

1 
(r?=O. 15) 

- 4  

- 6  

- 10 

- 15 

- 2.287: 
- 1.997C 

- 3.6875 
- 3.494 

- 6.4875 
- 6.371 

- 9.9875 
- 9.910 

-2.0175 
- 1.6802 

-3.2175 
-2.995 

-5.6175 
-5.484 

-8.6175 
-8.528 

-1.7275 
-1.3703 

-2.7275 
-2.493 

-4.7275 
-4.588 

-7.2275 
-7.134 

- 2.5375 
- 2.320 

- 4.1375 
- 3.991 

- 7.3375 
- 7.249 

-11.3375 
-11.277 

0.9025 
0.9178 

0.9025 
0.9097 

0.9025 
0.9053 

0.9025 
0.9038 

0.4225 
0.8954 

0.4225 
0.8819 

0.4225 
0.8730 

0.4225 
0.8693 

3 

2 
# (r2=0.15) 

4 

6 

10 

15 

0.5625 
u.58w 

0.5625 
0.5739 

0.5625 
0.5667 

0.5625 
0.5645 

0.4225 
0.452.3 

0.4225 
0.4348 

0.4225 
0.4270 

0.4225 
0.4245 

0.7225 
0.7440 

0.7225 
0.7322 

0.7225 
0.7262 

0.7225 
0.7242 

0.3025 
0.9264 

0.3025 
0.9067 

0.3025 
0.8941 

0.3025 
0.8891 

I 

3 
(rz=O. 15) 

- 4  

- 6  

- 10 

-1.5 

0.5625 
0.8265 

0.5625 
0.8201 

0.5625 
0.8156 

0.5625 
0.8138 

0.1225 
0.8659 

0.1225 
0.8421 

0.1225 
0.8269 

0.1225 
0.8209 

0.2025 
0.9172 

0.2025 
0.8936 

0.2025 
0.8788 

0.2025 
0.8730 

1.8000 
1.5262 

2.6000 
2.427 

4.2000 
4.100 

6.2000 
6.134 

4 
(r?=o.  15) 

- 4  

- 6  

- 10 

-15 

0.4500 
0.3414 

0.6500 
0.5839 

1.0500 
1.0121 

1.5500 
1.5252 

0.8800 
0.6907 

1.2800 
1.1633 

2.0800 
2.013 

3.0800 
3.036 

1.3300 
1.0862 

1.9300 
1.7779 

3.1300 
3.042 

4.6300 
4.572 

2.2900 
2.010 

3.2900 
3.111 

5.2900 
5.186 

7.7900 
7.721 

5 
(7, =o .2) 
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No. of Group 

Ih., 0 

Ih", m 

Ih6, 0 
\he, m 

Jh., 0 
\he, m 

Ih", 0 

\ h , , m  

6 
(I1 =o.  2) 

- 0.3500 - 0.7200 
- 0.2598 - 0.5613 

- 0.5500 - 1.1200 
- 0.4909 - 1.0154 

- 0.9500 - 1.9200 
- 0.9147 - 1.8572 

- 1.4500 - 2.9200 
- 1.4264 - 2.878 

7 
(rl = O .  2) 

8 
(rl = O .  2) 

4 

6 

10 

15 

- 4  

- 6  

- 10 

- 15 
__ 

4 

6 

10 

15 
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TABLE Zxontinued 

0.0900 
0.1004 

0.0900 
0.0940 

0.0900 
0.0914 

0.0900 
0.0906 

0.1600 
0.1773 

0.1600 
0.1669 

0.1600 
0.1625 

0.1600 
0.1611 

0.0100 
0.2968 

0.0100 
0.2976 

0.0100 
0.2948 

0.0100 
0.2933 

0.0000 
0.5220 

0.0000 
0.5148 

0.0000 
0.5073 

0.0000 
0.5040 

p=0.3 

- 1.0700 
- 0.8639 
- 1.6700 
- 1.5334 
- 2.8700 
- 2.788 
- 4.3700 
- 4.315 

0.2500 
0.2713 

0.2500 
0.2589 

0.2500 
0.2532 

0.2500 
0.2515 

0.0100 
0.7059 

0.0100 
0.6891 

0.0100 
0.6768 

0.0100 
0.6720 

8=0 .4  

- 1.4000 
- 1,1669 

- 2,2000 
-2.045 

-3.8000 
-3.706 

-5.8OOO 
-5.737 

0,3600 
0.3830 

0.3600 
0.3699 

0.3600 
0.3637 

0.3600 
0.3617 

0.0400 
0.8428 

0.0400 
0.8184 

0.0400 
0.8027 

0.0400 
0.7968 

p=0.5 

-1.7100 
- 1.4697 

-2.7100 
-2.549 

-4.7100 
-4.613 

-7.2100 
-7.144 

-____ 

-___ 
0.4900 
0.5126 

0.4900 r 
0.5000 

0.4900 
0.4938 

0.4900 
0.4918 

s 
I 

0.0900 
0.9296 I 

0.09OO 
0.9020 

0.0900 
0.8848 

0.0900 
0.8783 . 

I t  is a pleasure to express my sincere thanks to Mr. Clarence Wade, Jr., who performed 
the integration on the IBM 7090 computer a t  our center and to Mrs. Priscilla Weck, 
who plotted, in the course of the present investigation, a number of curves, including the 
one presented here. 
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